Ph.D. Entrance Examination

November - 2022

Part - C

(Civil Engineering)

Time: 50 Minutes

Maximum Marks: 50

(Minimum Passing Marks: 25)

Note:

- (i) This question booklet comprises of 50 questions.
- All questions are compulsory. (ii)
- The question booklet along with answer sheet is to be handed over by the candidate to (iii) the Invigilator at the end of the examination.
- There is no negative marking. (iv)
- Each question carries one mark. (v)

Mu

(c)

(d)

ultiple (Choice	e Questions	:									
1.	The	The factor affecting the mix design of concrete is										
	(a)	slump	(b)	w/c ra	atio	(c)	Fineness modulus			(d)	all of these	
2.	In Se	elf compactin	ng con	crete, t	he pro	portic	on of coarse a	aggreg	gates is	a	nd that of sand is	
	, i	n comparison	1 to co	nventi	onal c	oncret	e.					
	(a)	more,more	(b)	more	,less	(c)	less,more	(d)	less,le	ess		
3.	Mix	proportion fo	or M 2	0 grad	e of C	oncret	e is					
	(a)	1:1.5:3	(b)	1:2:4		(c)	1:1:2	(d)	1:3:5			
4.	Wate	er which is su	itable 1	for	is go	enerall	y consider fi	t for co	oncrete	maki	ng.	
	(a)	Industrial us	se	(b)	Agriculture			Drink	king	(d)	None of these	
5.	Conc	crete should b	e free	from								
	(a)	Segregation	1			(b)	Bleeding					
	(c)	Both (a) an	nd (b)			(d)	workability					
6.	W/c	ratio is ratio l	oetwee	en								
	(a)	Weight of c	ement	to We	ight of	fwater						
	(b)	Volume of o	emen	t to vol	ume c	of wate	r					

Volume of water to Volume of cement

Weight of water to weight of cement

/.	initial setting time of cement is not less than												
	(a)	30 minutes	(b)	1801	minute	es							
	(c)	360 minute	(d)	24 hours									
8.	Whi	ch among the	e follov	vings i	is a design mix concrete								
	(a)	M 30	(b)	M 10)	(c)	M 15	(d)	All of the above				
9.	In M	- 60 grade o	of conc	rete, N	I stan	ds for							
	(a)	Mixture	(b)	Mix		(c)	Moderate	(d)	None of the above				
10.	Whi	le defining o	charact	eristic	comp	ressiv	e strength of	concr	ete f_{ck} ,% samples should				
	have	strength abo	ove fck										
	(a)	100	(b)	95		(c)	80	(d)	none of these				
11.	Cond	ditions of sta	tic equi	ilibriur	n are								
	(a)	$\sum V=0$	(b)	$\sum H$	=0	(c)	$\sum M=0$	(d)	Allofthese				
12.	Whe	n equal and	opposi	ite forc	es app	olied to	a body, tend	l to sh	orten it, the stress so produced				
	is cal	led											
	(a)	compressi	ve stres	SS	(b)	(b) shear stress							
	(c)	tensile stre	SS		(d)	trans							
13.	The	slope at fixe	d supp	ort wil	l be eq	ual to							
	(a)	1	(b)	zero		(c)	0.5	(d)	None of these				
14.	Dete	rminate stru	ctures	are free	e from	_							
	(a)	Flexural st	resses		(b)	shear stresses							
	(c)	Temperatu	ire stre	sses	(d)	all of these							
15.	A th	ree hinged a	ch is										
	(a)	indetermin	ate stru	icture	(b)	dete	rminate struc	ture					
	(c)	instable str	ucture		(d)	all of	fthese						
16.	Forp	oreparation (of ILD	,L	oad is	rolled	on the struct	ture.					
	(a)	Heavy	(b)	0		(c)	unit	(d)	any load				
17.	Whi	ch among fo	llowing	gs is an	indete	ermina	te structure						
	(a)	Two hinge	d arch			(b)	Three hing	ed arcl	1				
	(c)	simply sup	ported	beam		(d) None of these							
18.	The	summation o	of distr	ibution	facto	rs at a j	joint shall be	equal	to				
	(a)	1	(b)	0		(c)	any numbe	r (d)	none of these				
19.	The		ard co			ls with	n design of R	CC str	ucture, is				
	(a)	IS:800	(b)	IS:45	56	(c)	IS:865	(d)	IS:12820				

2 Cont....3

20.	Simp	le bending th	eory e	quation	n is								
	(a) $M/I=R/E=f/y$ ((b)	M/I=E/R=f/y								
	(c)	(c) $M/I=R/E=y/f$ (c)				none of these							
21.	The	equivalent ler	ngth of	a colu	mn hi	inged at both ends, is							
	(a)	0.5L (b) 2L		(c)	0.75]	L	(d)	L					
22.	At po	oint of Contra	ıflexur	e, BM	will b	e							
	(a)	Maximum	(b)	Zero	(c)	Minir	num	(d)	chang	ging sign			
23.	Ratio	atio of volume of voids to volume of solids is called											
	(a)	void ratio (b) poros			sity	(c) % air voids (d) water c				rcontent			
24.	Soil which is completely dry, will be called as soil inphase system.												
	(a)	two (b)		three		(c)	one	(d) non		one of these			
25.	Liqui	d limit is mea	asured	by									
	(a)	Casagrande	e appai	ratus		(b)	Atterberg apparatus						
	(c)	core cutter				(d)	none of these						
26.	Fathe	er of soil mec	hanics	is									
	(a)	Taylor	(b)	Terza	ghi	(c)	Coulomb	(d)	None	e of these			
27.	Perm	eability is use	eful in	the									
	(a)	Settlement of	of build	ling		(b)	(b) yield of wells						
	(c)	design of fil	ters			(d)	all of these						
28.	In flo	ownet,the	dime	nsions	of the	field, g	greater will b	e the v	elocity	of flow through	n it.		
	(a)	greater	(b)	small	er	(c)	any type of	f	(d)	cannot say			
29.	Seep	age line is als	so calle	ed as									
	(a)	Phreatic line	Э			(b) stream function line							
	(c)	velocity pot	ential l	ine		(d)	all of these						
30.	The v	water which i	s in the	e pores	s of soi	il and	move under i	nfluer	ice of g	gravity is called			
	(a)	free water	(b) h	eld wa	ater	(c)	extra water		(d)	none of these			
31.	The	apward press	ure du	e to so	il on t	the underside of the footing is called							
	(a)	positive pressure				(b)	(b) Negative pressure						
	(c)	(c) contact pressure					(d) effective pressure						
32.	In co	nsolidation re	eduction	on of v	olume	is due	to						
	(a)	Expulsion o	fair			(b)	(b) Expulsion of water						
	(c)	dynamic los	ad redu	icino v	oids	(d)	Artificial means						

3 P.T.O.

33.	Smo	oth -wheel ro	ollers a	re useful for									
	(a)	finishing operation											
	(b)	compaction of thicker layers more than 1 m thickness											
	(c)	c) for kneading operations											
	(d)	for sheep for	oot act	ion									
34.	Cons	solidated-dra	ained t	ests are also	called	as	test						
	(a)	Quick	(b)	semi-quick		(c)	slow	(d)	normal				
35.	The	main princip	le of su	rveying is to	work								
	(a)	part to who	ole		(b)	whole to part							
	(c)	both of these				None	e of these						
36.	The	area of land t	hat ca	n be irrigated	l with a	a unit v	olume of w	ater sup	oplied is called				
	(a)	Duty	(b)	Delta	(c)	Both	of these	(d)	None of these				
37.	••••	is the depth	of wa	ter required 1	to raise	e a cro	p over a uni	t area.					
	(a)	Duty	(b)	Delta	(c)	Both	of these	(d)	None of these				
38.	Creep is												
	(a)	time depen	dent		(b)	time independent							
	(c)	temperatur	e depe	endent	(d)	None of these							
39.	As per IS 456:2000, there are five conditions.												
	(a)	Environme	ntal ex	posure	(b)	chemical conditions							
	(c)	thermal cor	ndition	S	(d)	none of these							
40.	Con	crete should	not be	done, when	-								
	(a)	Above 40 ^o).C		(b)	between 20 to 30°C							
	(c)	above 50°.	С		(d)	between 10 to 20°.C							
41.	i	is the graphic	al repi	resentation of	feleva	tions o	f given terra	ain.					
	(a)	Plane table	surve	y	(b)T	(b) Triangulation							
	(c)	Contour			(d)	None of these							
42.	Who	ole circle bear	ring of	f123°.30' wi	ll be	ll be In Quadrantal bearing system.							
	(a)	S 56°.30'E	3		(b)	N 56°.30'E							
	(c)	S 56°.30'V	V		(d)	None	e of these						
43.	In un	iform flow, t	he velo	ocity of fluid i	İS								
	(a)	Zero			(b)	Unifo	ormly Varyir	ng					
	(c) Constant				(d)	None	e of these						

4 Cont....5

44.	4. Partial differential derivative (w.r.t. a particular direction) ofgives velocity component									
	in tha	t direction.								
	(a)	Stream function		(b)	Velocity potential					
	(c)	Reynolds Numb	er	(d)	None of these					
45.	The E	Energy Grade Lin	e shows the h	eight o	f the					
	(a)	Elevation Head		(b)	Press	ure Head				
	(c)	Total Bernoulli	Constant Head	l (d)	(d) All of these					
46.	Chan	nel losses are								
	(a)	Evaporation		(b)	Seep	age				
	(c)	Both of these		(d)	None	of these				
47.	The I	The Ideal Site for a Rain gauge station is								
	(a)	Coniferous Fore	est (b)	Decid	duous	Forest				
	(c)	Mediterranean l	Forest (d)	Allo	fthese					
48.		is the maximum	gradient within	n which	n highv	vay enginee	r attemp	ots to d	esign the vertic	al
	profil	e of a road.								
	(a)	Exceptional grad	dient (b)	Limit	ing gra	dient				
	(c)	Both (a) and (b)	(d)	Rulin	g gradi	ient				
49.	Abso	lute minimum sig	ght distance is a	also cal	lled as	sight c	listance			
	(a)	Stopping (b)	Safe overta	king	(c)	Both (a) a	nd (b)	(d)	None of these	
50.	Super	r elevation is also	called as							
	(a)	Banking (b)	Cant (c)	Both	(a) an	d (b) (d)	None	e of the	ese	
