Ph.D. Entrance Examination November - 2022 Part - C (Mathematics) Time : 50 Minutes Maximum Marks : 50

Note :

- (i) This question booklet comprises of 50 questions.
- (ii) All questions are compulsory.
- (iii) The question booklet along with answer sheet is to be handed over by the candidate to the Invigilator at the end of the examination.
- (iv) There is no negative marking.
- (v) Each question carries one mark.

Multiple Choice Questions -

1.	Wh	at is not true about number zero			
	(a)	Even	(b)	Positive	
	(c)	Additive identity	(d)	Additive inverse of zero	
2.	Wh	ich one of them is not interval			
	(a)	(1,2)	(b)	(12, 13)	
	(c)	[3. <i>π</i>]	(d)	$(2\pi, 180)$	
3.	An	umber which is neither even nor odd is			
	(a)	0	(b)	2	
	(c)	2n such that $n \in Z$	(d)	2π	
4.	An	umber which is neither positive nor negative	veis		
	(a)	0	(b)	1	
	(c)	π	(d)	None of these	
5.	Ifa	real number is not rational then it is	••••		
	(a)	Integer	(b)	Algebraic number	
	(c)	Irrational number	(d)	Complex numbers	
6.	Wh	ich of the following numbers is not irration	al?		
	(a)	π	(b)	$\sqrt{2}$	
	(c)	$\sqrt{3}$	(d)	7	
7.	A convergent sequence has only limit(s).				
	(a)	One	(b)	Two	
	(c)	Three	(d)	None of these	

8.	A sequence $\{1^n\}$ is			
	(a) Bounded	(b)	Unbounded.	
	(c) Divergent.	(d)	None of these.	
9.	A sequence $\{(-1)^n\}$ is			
	(a) Convergent.	(b)	Unbounded.	
	(c) Divergent.	(d)	Bounded.	
10.	If the sequence is decreasing,	then it		
	(a) Converges to its infimum	ı. (b)	Diverges.	
	(c) May converges to its infi	mum (d)	Is bounded.	
11.	If the sequence is increasing,	then it		
	(a) Converges to its suprem	um. (b)	Diverges.	
	(c) May converges to its sup	oremum. (d)	Is bounded.	
12.	The inverse of the matrix is po	ossible only for		
	(a) Singular matrix	(b)	Zero matrix	
	(c) Symmetric matrix	(d)	Non-singular matrix	
13.	$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$ The trace of the	matrix is		
	(a) 0	(b)	4	
	(c) 7	(d)	5	
14.	If Rank(A)=2 and Rank (B)=	3 then Rank(AB)=		
	(a) 6	(b)	5	
	(c) 3	(d)	Data inadequate	
15.	The condition for which Eiger	n values of the matrix	$A = \begin{bmatrix} 2 & 1 \\ 1 & K \end{bmatrix} are positive is$	
	(a) K>1/2	(b)	K>-2	
	(c) K>0	(d)	K<-1/2	
16.	If the following system has not	n trivial solution,		
	px+qy+rz=0		qx+ry+pz=0	
	rx+py+qz=0	The	n which of the following is true	
	(a) $p-q+r=0$ or $p=q=-r$	(b)	p+q-r=0 or p=-q=r	
	(c) $p+q+r=0$ or $p=q=r$	(d)	p-q+r=0 or p=-q=-r	
17.	The relation $ 3 - Z + 3 + Z = 5$	represents		
	(a) A circle	(b)	A parabola	
	(c) An ellipse	(d)	A Hyperbola	

18.	If a determinant of a matrix A is -12 then the determinant of matrix 2A is		
	(a) -96	(b)	-24
	(c) 24	(d)	96
19.	If A is mxn matrix such that AB and BA both	n are de	efined, then B is a matrix of order
	(a) nxn	(b)	mxm
	(c) mxn	(d)	nxm
20.	The value of the determinant $\begin{vmatrix} 1 & a & b \\ 1 & b & c \\ 1 & c & a \end{vmatrix}$	$\begin{array}{c c} + & c \\ + & a \\ + & b \end{array}$	is
	(a) 0	(b)	1
	(c) a+b+c	(d)	3
21.	A matrix X has a dimension of $2x2$. If the eig	gen va	lues of the matrix is 5 and 6. What would
	be the eigen values of X^2 is		
	(a) 2.5 and 3	(b)	5 and 6
	(c) 10 and 12	(d)	25 and 36
22.	Eigen values of a real symmetric matrix are a	lways	
	(a) Positive	(b)	Negative
	(c) Real	(d)	Complex
23.	Which of the following is true?		
	(a) Differentiability does not imply continuit	У	
	(b) Differentiability implies continuity		
	(c) Continuity implies differentiability		
	(d) There is no relation between continuity a	and dif	ferentiable
24.	Which of the following is true about $f(z)=z^2$?)	
	(a) Continuous and differentiable	(b)	Continuous but not differentiable
	(c) Neither continuous nor differentiable	(d)	Differentiable but not continuous
25.	Which of the following is true about $f(z)=z+iz$	z?	
	(a) Continuous and differentiable	(b)	Continuous but not differentiable
	(c) Neither continuous nor differentiable	(d)	Differentiable but not continuous
26.	The function $f(z) = z ^2$ has		
	(a) One singular point	(b)	Two singular points
	(c) Three singular points	(d)	No singular point

27.	If $f(z)$ is an analytic function whose real part is constant then $f(z)$ is			
	(a) function of z	(b)	function of x only	
	(c) Function of y only	(d)	Constant	
28.	A function which is analytic everywhere in a	compl	ex plane is known as	
	(a) Harmonic function	(b)	Differentiable function	
	(c) Regular function	(d)	Entire function	
29.	The value of $ e^{i\theta} $ is			
	(a) 1	(b)	0	
	(c) -1	(d)	π	
30.	The function $f(z) = xy+iy$ is			
	(a) Nowhere analytic	(b)	Analytic every where	
	(c) Analytic only at origin	(d)	Analytic except at the origin	
31.	Complex plane is also known as			
	(a) Gaussian plane	(b)	X-Y plane	
	(c) X plane	(d)	Y-plane	
32.	A domain that is not simply connected is said	A domain that is not simply connected is said to be		
	(a) Contour	(b)	Multiply connected	
	(c) Connected	(d)	None of these	
33.	If a function f is analytic throughout a simple	le coni	nected domain D, then $\int f(z) dz =$	
	(a) 0	(b)	$2\pi i$	
	(c) $2\pi i(z)$	(d)	1	
34.	If <i>f</i> is continuous in a domain D and if $f(z)$ d	z = 0 f	for every simple closed positively oriented	
	contour C in D, then			
	(a) f is analytic in D	(b)	f is real valued in D	
	(c) f is constant in D	(d)	f is imaginary in D	
35.	The converse of Cauchy-integral theorem is			
	(a) Euler's theorem	(b)	Liouville's theorem	
	(c) Morera's theorem	(d)	Goursat's theorem	
36.	Piecewise smooth curve is also known as			
	(a) contour	(b)	smooth curve	
	(c) circle	(d)	regular curve	

37.	If the principal part of $f(z)$ at z_0 is zero, then the point z_0 is known as			
	(a)	Pole	(b)	Removable singular point
	(c)	Simple pole	(d)	None of these
38.	The	zero of the function $z / \cos z$ is		
	(a)	1	(b)	0
	(c)	-1	(d)	π
39.	The	order of the zeros of the function $\sin z/(z$:+4) is	
	(a)	1	(b)	2
	(c)	3	(d)	4
40.	The	principal part of $f(z)$ at z_0 consists of infi	inite n	umber of terms, then z_0 is known as
	(a)	Pole	(b)	Essential singular point
	(c)	Removable singular point	(d)	Simple pole
41.	Nu	merical techniques more commonly invol-	ve	
	(a)	Elimination method	(b)	Reduction method
	(c)	Iterative method	(d)	Direct method
42.	Wh	ich of the following is an iterative method?	,	
	(a)	Gauss Seidel	(b)	Gauss Jordan
	(c)	Factorization	(d)	Gauss Elimination
43.	Wh	ich of the methods is a direct method for so	olving	simultaneous algebraic equations?
	(a)	Relaxation method	(b)	Gauss seidel method
	(c)	Jacobi's method	(d)	Cramer's rule
44.	If EF exists, then (EF) ⁻¹ will be equal to which of the following?			
	(a)	F ⁻¹ E ⁻¹	(b)	E ⁻¹ F ⁻¹
	(c)	EF	(d)	FE
45.	Mat	trix which does not have an inverse by solv	ving it,	is classified as which of the following?
	(a)	Singular matrix	(b)	Non-singular matrix
	(c)	Linear matrix	(d)	Unidentified matrix
46.	Cra	mer's Rule fails for		
	(a)	Determinant=0	(b)	Determinant = non-real
	(c)	Determinant < 0	(d)	Determinant>0

- 47. What is the condition applied in the factorization method?
 - (a) There must exist a diagonal matrix form of the given matrix
 - (b) Matrix should not be singular
 - (c) All principal minors of the matrix should be non-singular
 - (d) Back substitution should be done

48. A and B are two events such that P(A) = 0.4 and $P(A \cap B) = 0.2$ Then $P(A \cap B)$ is

equal to _____

- (a) 0.4 (b) 0.2
- (c) 0.6 (d) 0.8

49. Let A and B be two events such that the occurrence of A implies occurrence of B, But not vice- versa, then the correct relation between P(a) and P(b) is?

- (a) P(A) < P(B) (b) $P(B) \ge P(A)$
- (c) P(A) = P(B) (d) $P(A) \ge P(B)$
- 50. What is the probability of an impossible event?
 - (a) 0 (b) 1
 - (c) Not defined (d) Insufficient data
