\qquad

Ph.D. Entrance Examination
 November - 2022
 Part - C
 (Mathematics)
 Time : 50 Minutes
 Maximum Marks : 50

Note:

(i) This question booklet comprises of 50 questions.
(ii) All questions are compulsory.
(iii) The question booklet along with answer sheet is to be handed over by the candidate to the Invigilator at the end of the examination.
(iv) There is no negative marking.
(v) Each question carries one mark.

Multiple Choice Questions -

1. What is not true about number zero
(a) Even
(b) Positive
(c) Additive identity
(d) Additive inverse of zero
2. Which one of them is not interval
(a) $(1,2)$
(b) $(12,13)$
(c) $[3 . \pi]$
(d) $(2 \pi, 180)$
3. A number which is neither even nor odd is
(a) 0
(b) 2
(c) 2 n such that $\mathrm{n} \in \mathrm{Z}$
(d) 2π
4. A number which is neither positive nor negative is
(a) 0
(b) 1
(c) π
(d) None of these
5. If a real number is not rational then it is \qquad
(a) Integer
(b) Algebraic number
(c) Irrational number
(d) Complex numbers
6. Which of the following numbers is not irrational?
(a) π
(b) $\sqrt{2}$
(c) $\sqrt{3}$
(d) 7
7. A convergent sequence has only \qquad limit(s).
(a) One
(b) Two
(c) Three
(d) None of these
8. A sequence $\left\{1^{n}\right\}$ is
(a) Bounded
(b) Unbounded.
(c) Divergent.
(d) None of these.
9. A sequence $\left\{(-1)^{n}\right\}$ is
(a) Convergent.
(b) Unbounded.
(c) Divergent.
(d) Bounded.
10. If the sequence is decreasing, then it \qquad
(a) Converges to its infimum.
(b) Diverges.
(c) May converges to its infimum
(d) Is bounded.
11. If the sequence is increasing, then it \qquad
(a) Converges to its supremum.
(b) Diverges.
(c) May converges to its supremum.
(d) Is bounded.
12. The inverse of the matrix is possible only for
(a) Singular matrix
(b) Zero matrix
(c) Symmetric matrix
(d) Non-singular matrix
13. $\mathrm{A}=\left[\begin{array}{ll}2 & 4 \\ 3 & 2\end{array}\right]$ The trace of the matrix is
(a) 0
(b) 4
(c) 7
(d) 5
14. If $\operatorname{Rank}(A)=2$ and $\operatorname{Rank}(B)=3$ then $\operatorname{Rank}(A B)=$
(a) 6
(b) 5
(c) 3
(d) Data inadequate
15. The condition for which Eigen values of the matrix $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & \mathrm{~K}\end{array}\right]$ are positive is
(a) $\mathrm{K}>1 / 2$
(b) $\mathrm{K}>-2$
(c) $\mathrm{K}>0$
(d) $\mathrm{K}<-1 / 2$
16. If the following system has non trivial solution,
$\mathrm{px}+\mathrm{qy}+\mathrm{rz}=0$
$\mathrm{rx}+\mathrm{py}+\mathrm{qz}=0$
$q x+r y+p z=0$
Then which of the following is true
(a) $\mathrm{p}-\mathrm{q}+\mathrm{r}=0$ or $\mathrm{p}=\mathrm{q}=-\mathrm{r}$
(b) $\mathrm{p}+\mathrm{q}-\mathrm{r}=0$ or $\mathrm{p}=-\mathrm{q}=\mathrm{r}$
(c) $\mathrm{p}+\mathrm{q}+\mathrm{r}=0$ or $\mathrm{p}=\mathrm{q}=\mathrm{r}$
(d) $\mathrm{p}-\mathrm{q}+\mathrm{r}=0$ or $\mathrm{p}=-\mathrm{q}=-\mathrm{r}$
17. The relation $|3-Z|+|3+Z|=5$ represents
(a) A circle
(b) A parabola
(c) An ellipse
(d) A Hyperbola
18. If a determinant of a matrix A is -12 then the determinant of matrix 2 A is
(a) -96
(b) -24
(c) 24
(d) 96
19. If A is mxn matrix such that $A B$ and $B A$ both are defined, then B is a matrix of order
(a) $n x n$
(b) mxm
(c) $m \times n$
(d) nxm
20. The value of the determinant $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$ is
(a) 0
(b) 1
(c) $a+b+c$
(d) 3
21. A matrix X has a dimension of 2×2. If the eigen values of the matrix is 5 and 6 . What would be the eigen values of X^{2} is
(a) 2.5 and 3
(b) 5 and 6
(c) 10 and 12
(d) 25 and 36
22. Eigen values of a real symmetric matrix are always
(a) Positive
(b) Negative
(c) Real
(d) Complex
23. Which of the following is true?
(a) Differentiability does not imply continuity
(b) Differentiability implies continuity
(c) Continuity implies differentiability
(d) There is no relation between continuity and differentiable
24. Which of the following is true about $\mathrm{f}(\mathrm{z})=\mathrm{z}^{2}$?
(a) Continuous and differentiable
(b) Continuous but not differentiable
(c) Neither continuous nor differentiable
(d) Differentiable but not continuous
25. Which of the following is true about $f(z)=z+i z$?
(a) Continuous and differentiable
(b) Continuous but not differentiable
(c) Neither continuous nor differentiable
(d) Differentiable but not continuous
26. The function $f(z)=|z|^{2}$ has
(a) One singular point
(b) Two singular points
(c) Three singular points
(d) No singular point
27. If $f(z)$ is an analytic function whose real part is constant then $f(z)$ is
(a) function of z
(b) function of x only
(c) Function of y only
(d) Constant
28. A function which is analytic everywhere in a complex plane is known as
(a) Harmonic function
(b) Differentiable function
(c) Regular function
(d) Entire function
29. The value of $\left|e^{i \theta}\right|$ is
(a) 1
(b) 0
(c) -1
(d) π
30. The function $f(z)=x y+i y$ is
(a) Nowhere analytic
(b) Analytic every where
(c) Analytic only at origin
(d) Analytic except at the origin
31. Complex plane is also known as
(a) Gaussian plane
(b) X-Y plane
(c) X plane
(d) Y-plane
32. A domain that is not simply connected is said to be
(a) Contour
(b) Multiply connected
(c) Connected
(d) None of these
33. If a function f is analytic throughout a simple connected domain D , then $\int f(z) d z=$
(a) 0
(b) $2 \pi i$
(c) $2 \pi \mathrm{i}(\mathrm{z})$
(d) 1
34. If f is continuous in a domain D and if $f(z) \mathrm{dz}=0$ for every simple closed positively oriented contour C in D , then
(a) f is analytic in D
(b) $\quad f$ is real valued in D
(c) f is constant in D
(d) f is imaginary in D
35. The converse of Cauchy-integral theorem is
(a) Euler's theorem
(b) Liouville's theorem
(c) Morera's theorem
(d) Goursat's theorem
36. Piecewise smooth curve is also known as
(a) contour
(b) smooth curve
(c) circle
(d) regular curve
37. If the principal part of $f(z)$ at Z_{0} is zero, then the point z_{0} is known as
(a) Pole
(b) Removable singular point
(c) Simple pole
(d) None of these
38. The zero of the function $\mathrm{z} / \cos \mathrm{z}$ is
(a) 1
(b) 0
(c) -1
(d) π
39. The order of the zeros of the function $\sin z /(z+4)$ is
(a) 1
(b) 2
(c) 3
(d) 4
40. The principal part of $f(z)$ at z_{0} consists of infinite number of terms, then z_{0} is known as
(a) Pole
(b) Essential singular point
(c) Removable singular point
(d) Simple pole
41. Numerical techniques more commonly involve \qquad
(a) Eliminationmethod
(b) Reduction method
(c) Iterative method
(d) Direct method
42. Which of the following is an iterative method?
(a) Gauss Seidel
(b) Gauss Jordan
(c) Factorization
(d) Gauss Elimination
43. Which of the methods is a direct method for solving simultaneous algebraic equations?
(a) Relaxation method
(b) Gauss seidel method
(c) Jacobi's method
(d) Cramer's rule
44. If EF exists, then $(\mathrm{EF})^{-1}$ will be equal to which of the following?
(a) $\mathrm{F}^{-1} \mathrm{E}^{-1}$
(b) $\mathrm{E}^{-1} \mathrm{~F}^{-1}$
(c) EF
(d) FE
45. Matrix which does not have an inverse by solving it, is classified as which of the following?
(a) Singularmatrix
(b) Non-singular matrix
(c) Linearmatrix
(d) Unidentified matrix
46. Cramer's Rule fails for \qquad
(a) Determinant $=0$
(b) Determinant $=$ non-real
(c) Determinant <0
(d) Determinant >0
47. What is the condition applied in the factorization method?
(a) There must exist a diagonal matrix form of the given matrix
(b) Matrix should not be singular
(c) All principal minors of the matrix should be non-singular
(d) Back substitution should be done
48. A and B are two events such that $P(A)=0.4$ and $P(A \cap B)=0.2$ Then $P(A \cap B)$ is equal to \qquad
(a) 0.4
(b) 0.2
(c) 0.6
(d) 0.8
49. Let A and B be two events such that the occurrence of A implies occurrence of B, But not vice- versa, then the correct relation between $\mathrm{P}(\mathrm{a})$ and $\mathrm{P}(\mathrm{b})$ is?
(a) $\mathrm{P}(\mathrm{A})<\mathrm{P}(\mathrm{B})$
(b) $\mathrm{P}(\mathrm{B}) \geq \mathrm{P}(\mathrm{A})$
(c) $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})$
(d) $\mathrm{P}(\mathrm{A}) \geq \mathrm{P}(\mathrm{B})$
50. What is the probability of an impossible event?
(a) 0
(b) 1
(c) Not defined
(d) Insufficient data
