Ph.D. Entrance Examination November - 2022 Part - C (Physics) Time : 50 Minutes Maximum Marks : 50

(Minimum Passing Marks : 25)

Note :

- (i) This question booklet comprises of 50 questions.
- (ii) All questions are compulsory.
- (iii) The question booklet along with answer sheet is to be handed over by the candidate to the Invigilator at the end of the examination.
- (iv) There is no negative marking.
- (v) Each question carries one mark.

Multiple Choice Questions -

- 1. The interfacial angles of a cubic crystal system are given by
 - (a) $a = \beta = \gamma = 90^{\circ}$ (b) $a = \beta = 90^{\circ} \gamma = 120^{\circ}$
 - (c) $a = \beta = \gamma \neq 90^{\circ}$ (c) $a \neq \beta \neq \gamma \neq 90^{\circ}$
- 2. The magnetic susceptibility of superconductor is
 - (a) 0 (b) -1 (c) 1 (d) -0.5

3. Valence band is also the conduction band in

- (a) Conductors (b) Insulators (c) Semiconductors (d) None of these
- 4. Max Born gave
 - (a) wave function (b) wave nature
 - (c) wave velocity (d) wave phase velocity
- 5. The value of potential energy for free particle is
 - (a) Finite (b) Infinite (c) Zero (d) One
- 6. Central forces are _____ in nature
 - (a) Conservative (b) Non-conservative
 - (c) Both (a) and (b) (d) Neither (a) nor (b)

7.	The	he reduced mass of two objects having masses m_1 and m_2 is									
	(a)	Less than m_1 and m_2	(b)	Greater than m_1 and m_2 both							
	(c)	Between m_1 and m_2	(d)	Equal to m ₁							
8.	The	unit of sound is									
	(a)	Watt (b) dB (c) Volur	ne	(d) Hertz							
9.	Ifthe	e momentum of a particle is incr	to 4 times, then the De-Broglie wavelength will								
	beco	ome									
	(a)	Two times (b) Four times	(c)	Half times (d) One-fourth times							
10.	The	e plane in which the electric field vector of plane polarized light vibrates is known as									
	(a)	Principal Plane	(b)	Plane of Polarization							
	(c)	Plane of vibration	(d)	Plane of oscillation							
11.	The	inverse of resolution is called									
	(a)	Dispersive power	(b)	Resolving power							
	(c)	Constructive power	(d)	Destructive power							
12.	Wha	at is the effect of increasing the number of slits on the intensity of Central maxima of									
	diffr	action pattern of a diffraction grating?									
	(a)	Intensity of central maxima will decrease									
	(b)	Intensity of central maxima will increase									
	(c)	There will not be any effect									
	(d)) Diffraction pattern will disappear									
13.	In an	an optical resonator, two plane mirrors are									
	(a)	Parallel to each other		(b) Anti Parallel to each other							
	(c)	Perpendicular to each other		(d) make 45 degree angle with each other							
14.	The	need of pumping in laser is									
	(a)	To reduce the life time of atoms	s in gro	ound state							
	(b)	To excite most of the atoms to l	higher	energy state							
	(c)	To bring most of the atoms to g	round	l state							
	(d) To achieve stable condition										
15.	The	number of atoms per unit volume	e at an	energy level is called							
	(a) Population (b) Population Inversion										

(c) Population density (d) Thermal population

2

16.	The output of three level laser system is										
	(a)	A pulse wave	(b)	A continuous wave							
	(c)	A square wave	(d)	A rectangular wave							
17.	The coherence with time in the waves travelling in one path is called										
	(a)	Temporal coherence	(b)	Spatial coherence							
	(c)	Linear coherence	(d)	Non linear coherence							
18.	According to stoke's law, the expression for maxima is										
	(a)	$2\mu t\cos r = (n+1)\lambda/2$	(b)	$2\mu t\cos r = n\lambda$							
	(b)	$2\mu t\cos r = 2n\lambda$	(d)	$2\mu t\cos r = (2n+1)\lambda/2$							
19.	The expression for fringe width is										
	(a)	$\beta = \lambda d/2D$	(b)	$\beta = 2d / D\lambda$							
	(c)	$\beta = D/2d\lambda$	(d)	$\beta = D\lambda / 2d$							
20.	The	path difference corresponding	to a pha	ase difference of π radian is							
	(a)	2 λ (b) $\lambda/2$	(c)	$\lambda/4$ (d) λ							
21.	Interference in thin film is mainly because of										
	(a)	Division amplitude	(b)	Division of wave fronts							
	(c)	Addition of amplitude	(d)	Addition of wave fronts							
22.	Michelson's fringes are										
	(a)	Haidinger's fringes	(b)	Newton's fringes							
	(c)	Young's fringes	(d)	Fresnel's fringes							
23.	The fringe width and the angle of wedge are related to										
	(a)	$\beta = \lambda / 2\theta$	(b)	$\theta = \lambda / 2\beta$							
	(c)	$\beta = \lambda / \theta$	(d)	$\lambda = \beta / 2\theta$							
24.	Stimulated emission is called										
	(a)	Spontaneous emission	(b)	Inverted absorption							
	(c)	Stimulated absorption	(d)	Stimulated radiation							
25.	Production of Laser does not include										
	(a)	Active medium	(b)	Optical medium							
	(c)	Optical activity	(d)	Optical resonator							

P.T.O.

26.	The energy state which has a longer life time than excited state is known as												
	(a) Metastable state			(b)	tetrastable state								
	(c)	Gigastable state				(d)	Hexa	stable	state				
27.	27. Davisson and Germer experiment relates to												
	(a)	Interference				(b)	Polarisation						
	(c)	Electron diff	liffraction			(d)	Phosphorence						
28.	The	crystal plane (s paral	lel to									
	(a)	X axis	(b)	Yaxis	5	(c)	Zaxi	8	(d)	X axi	is and Z	Zaxis	
29.	The wavelength of matter waves is independent of												
	(a)	Mass	(b)	Veloc	ity	(c)	Momentum (d)		(d)	Charge			
30. Compton effect is associated with													
	(a)	Visible light		(b)	X-ra	ys	(c)	β - r	ays	(d)	α -ray	ys	
31.	The t	total probabili	ity of f	inding	the pa	rticle i	in spac	e mus	t be				
	(a)	zero	(b)	doubl	e	(c)	unity		(d)	infinit	У		
32.	Wha	t is the value	of $ \Psi ^2$	2 ?									
	(a)	$\left \Psi\right ^2 = \Psi\Psi$	*			(b)	$\left \Psi\right ^{2}$	= ΨΨ					
	(c)	$\left \Psi\right ^{2} = \Psi / \Psi$	h *			(d)	$ \Psi ^2$	=Ψ*	/Ψ				
33.	3. All microscopic physical entities that have both wave and particle properties is called									rties is called th	le		
	wave	e particle		•••									
	(a)	singularity	singularity (b) duality			(c)	traingularity			(d) nullity			
34.	Thev	wave function	n of the	e partic	le in a	box of	flengtl	h 'L' lie	es in w	/hich r	egion?		
	(a)	$0 > x < \Gamma$	(b)	$\mathbf{x} < 0$	>L	(c)	0 < x	< L	(d)	X > L	.>0		
35.	In th	ree dimensior	nal Scł	nröding	ger wa	ive equ	uation,	the op	erator	∇^2 i	is calle	d	
	(a)	Hamiltonian	(b)	vecto	r	(c)	Lapla	cian	(d)	Poiss	on		
36.	In the	e equation H	$\psi_n =$	EnΨ,	ψ_n, ψ_n	, is							
	(a)	Eigen Vector	rs	(b)	Eiger	n Funct	tions	(c)	Oper	ators	(d)	Eigen Values	
37. Niels Bohr used quantum mechanics to describe which element?													
	(a)	Hydrogen	(b)	Heliur	n	(c)	Carb	on	(d)	Zinc			
38.	Unit	cells for most	t of the	e crysta	als are								
	(a)	Parallelopip	ed	(b)	Sphe	rical	(c)	Ellipt	ical	(d)	Нурег	bolic	

39.	The axial relationship of a monoclinic crystal system is given as												
	(a)	a = b = c		(b)	a = b	≠c	(c)	a≠l	b = c	(d)	$a \neq b \neq c$		
40.	The	The coefficient of restitution (e) for perfectly elastic collision is											
	(a)	0 <e<1< td=""><td>(b)</td><td>e= 0.5</td><td>5</td><td>(c)</td><td>e= 1</td><td></td><td>(d)</td><td>e=0</td><td></td></e<1<>	(b)	e= 0.5	5	(c)	e= 1		(d)	e=0			
41.	Angu	ngular momentum L is conserved when											
	(a)	Force (F) has infinite value											
	(b)	Position vector (r) parallel to force (F)											
	(c)	position vector(r) has finite value											
	(d)	d) position vector (r) perpendicular to force(F)											
42.	Allc	All circular motion requires											
	(a) Centripetal force					(b)	Centrifugal force						
	(c)	Coriolis for	ce			(d)	Centra	al fore	ce				
43.	The	laws of Newt	on are	applica	able in								
	(a) Rotating frame					(b)	Inertial frame						
	(c)	Accelerated frame				(d)	Non-inertial frame						
44.	Whie	ch of the follo	wingi	s a crys	talline	solid?	•						
	(a)	Glass bottle	ass bottle			(b)	Polyth	iene b	bag				
	(c)	Copper wire				(d)	Rubbe	er ball	l				
45.	The	packing dens	ity of l	Face Co	entered	d Cub	ic is						
	(a)	0.74	(b)	0.074		(c)	0.070	70.4					
46.	Wha	t is the atomi	c radiu	ıs of a I	Body c	entere	ed cubi	c crys	stal str	ucture	?		
	(a)	a/4	(b)	a/2	((c)	$a\sqrt{3}$ /	4		(d)	$a\sqrt{2}/4$		
47.	Acco	According to Heisenberg uncertainty principle											
	(a) $\Delta x \times \Delta p > h/4\pi$					(b)	$\lambda = h / p$						
	(c)	$\Delta x \times \Delta p = h / 6\pi$				(d)	$E = mc^2$						
48.	The	mass of a mov	ving pl	hoton is	5								
	(a)	h^v/c^2	(b)	h*v/c		(c)	h*v			(d)	h*v*0		
49.	For a quantum wave particle,												
	(a)	$E = \hbar k$	(b)	$E = \hbar$	ω	(c)	$E = \hbar$	<i>ω</i> /2		(d)	$E = \hbar k / 2$		
50.	The	The Schrödinger is a											
	(a)	(a) differential equation				(b)	partial differential equation						
	(c)	partial integr	ral equ	ation		(d)	integra	al equ	ation				
